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Prehistory

Since 1989, the SPEC CPU benchmarks have aspired
to ambitious goals: fair, portable, comparable tests using the
compute-intensive portion of real applications. It may be
difficult today to remember just how much of a challenge
these goals presented when SPEC was first founded, or how
much of a break they were from previous industry practice.

A typical example, recently discovered while cleaning
a basement, is a 1985 Performance Guide. Containing 190
pages, it is well-produced, with glossy covers, many graphs
and tables, and a wide variety of tests. But for the most part,
performance results are presented with only sparse descrip-
tions of the conditions of observation (workload, versions of
software, details of the hardware). The document — which
obviously had much effort put into it and which would clear-
ly be of great interest to customers — is officially marked
“Internal Use Only”, although one suspects that this marking
may often have been ignored. Results are given for only one
vendor’s product line, with no competitive comparisons. If
a third party wanted to generate their own competitive com-
parisons, they would be unable to do so, because the source
code of the measured applications was not available.

At first glance, the exception appears to be four bench-
marks with public source code: the 1985 Performance Guide
does contain results for Dhrystone, LINPACK, Livermore
Loops, and Whetstone. But the competitive comparisons are
not given, and in some cases it is stated that the benchmark
has been modified, without giving details of how or why.
Finally, even if these four tests had been presented in a com-
parable form, these benchmarks are subject to the criticism
that they are small, organized around short loop “kernels”.

In short, although interesting performance work was
done by vendors in the 1980s, it tended to be opaque, non-
comparable, non-reproducible, and proprietary.

Comparable Results using Compute-Intensive,
Portable Source from Real Applications

By contrast, SPEC values transparent benchmarks that
can be compared across platforms and reproduced. For the
first 15 years, SPEC’s president, Kaivalya Dixit, evangelized
the SPEC development culture with the principle that propri-
etary interests should be subordinated to the interest in tech-
nically credible, fair, vendor-neutral benchmarks.[1] An
early, and often-repeated, SPEC motto is that “an ounce of
honest data is worth a pound of marketing hype”.

SPEC CPU benchmarks use portable source code with
strict limits on modifications. In contrast to earlier portable
benchmarks, SPEC CPU seeks real application code. Where
Whetstone was 284 lines long (including comments), the
first SPEC CPU suite included the Gnu C compiler as
001.gcc, with 138,901 lines of code, and 013.spice2g6 with
22,386.

Not all the benchmarks from that first set honored the
goal of being real applications: for example, 020.nasa7 was a
set of 7 kernels that were created as a benchmark, not as an
application. As later versions of the suite were introduced,
there have been others. But it is a substantial negative point
during discussion of a benchmark candidate to say that it is
“just a benchmark”, and it is a substantial positive point to
say “that’s a real application with real users”. Over the
years, SPEC has included more real application code and
proportionately less code that is “just” a benchmark.

SPEC trims I/O from CPU benchmarks, while preserv-
ing the intended areas of testing: CPU, memory, and compil-
er. What else should be trimmed? If a program has 10 ma-
jor modules, and the supplied workload uses only 3 of them,
should the other 7 be dropped? What about error pathways —
should those be trimmed? Recent suites have tended to keep
as much as practical, so as to remain closer to the original
application.

The desire for real applications, and the hesitancy to
trim them, are primary reasons why the SPEC CPU suites
have grown, as summarized in Figure 1. On the following
pages, Figures 2 and 3 detail the sizes of individual bench-
marks, first in lines of code and then in terms of number of
source files.
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Figure 1: Suite growth. The term “CPU89” is an
anachronism: it was then known as “SPECmark”, and
“CPU92” was then called “SPEC92”. But since 1995,
SPEC has often released more than one benchmark in a
single year, as it has expanded to include web services,
graphics, Java, etc. Therefore, for over 10 years, names
have used the form SPEC <benchmark> <year>. (Note:
there is no such thing as SPEC2006, nor did SPEC2000
ever exist.)
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Figure 2:

KLOC (Lines of Code x1000, incl. comments/whitespace)
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Figure 3: SPEC CPU Modules (source code files)
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The CPU2006 benchmarks mentioned in Figures 2 and
3 are described at [2], and earlier benchmarks at [3]. The
grand totals for each suite are:

KLOC |Modules
CPU89 214 407
CPU92 240 452
CPU95 425 608
CPU2000 811 1,432
CPU2006 3,334 5,621

Other factors affecting suite growth

In addition to the desire for real applications, and a hes-
itancy to trim them, other factors have also contributed to the
growth of the SPEC CPU suites in recent years.

Implementation languages have changed. The earlier
suites used Fortran-77 and C. More recently, Fortran 90 and
C++ have come into use. C++ is, of course, an Object-Ori-
ented Programming language; and the largest Fortran 90
program, 465.tonto, is written in an OOP style. While one
would not wish to cast aspersions on OOP, it is probably fair
to say that encapsulation, message passing, and abstraction
are somewhat unlikely to be associated with brevity.

Search programs have brought new codes. Both
CPU2000 and CPU2006 solicited contributions.  The
“Benchmark Search Programs” were advertised via the
SPEC web site, relevant Usenet groups, and Computer Ar-
chitecture News.[4] Contributors provided source code and
workloads, assisted with porting, helped solve validation is-
sues, and were compensated up to $5000. A list of success-
ful entries to the CPU2006 benchmark search program may
be found at [5].

“More is better.” The CPU subcommittee has had
several discussions of whether having more benchmarks
makes a better suite. Several concerns have been raised to
argue against large suites. (1) SPEC CPU2006 has a grand
total of 3.3 million lines of code. From a maintainability
perspective, having this much code is a risk. It is a certainty
that any program set this large has bugs. SPEC hopes that
the worst of them have been shaken out during testing, and
that the remainder will not affect the usefulness of perfor-
mance results. But clearly, a larger suite carries more oppor-
tunities for bugs. (2) As the number of benchmarks grows, it
becomes increasingly likely that hardware designers will not
bother to, or will not be able to, simulate the entire suite.
(3) As the number of benchmarks grows, some researchers
may even complain of “duplication” in the suite. [6]

Despite these concerns, the majority of the subcommit-
tee tended to agree that “more is better”, for several reasons.
(1) Having more benchmarks allows more application areas
to be represented. (2) Having more benchmarks allows
more programming styles to be represented. Consider, for
example, 416.gamess vs. 465.tonto: both are chemistry
codes. Both are written in Fortran. ONE OF THEM IS
WRITTEN IN UNABASHED OLD-STYLE FORTRAN,
AND HAS BEEN AROUND SINCE BEFORE THE IN-
VENTION OF LOWER CASE LETTERS. The other is far
more recent, and makes unabashed use of the features of
Fortran-95 (with grudging support for Fortran-90).  After
discussion, the subcommittee decided that both program-

ming styles deserve representation. (3) Having more bench-
marks may tend to encourage compiler developers to imple-
ment optimizations that help a wide variety of programs,
while decreasing the payoff from more narrowly targeted
optimizations. (4) Although two programs may appear to
“duplicate” each other on today’s hardware, there is always
the possibility that one of them — and only one of them —
may turn out to be sensitive to some difference in tomor-
row’s system implementations.

Larger codes are useful for compiler QA. The SPEC
CPU suites are performance packages, not quality assurance
packages. Nevertheless, it is clear that SPEC CPU develop-
ment efforts expose bugs in both candidate benchmarks and
in compilers. For example, as of February 28, 2005, SPEC
had testing reports for 52 candidate benchmarks on 33 plat-
forms, with various versions of compilers, operating sys-
tems, and hardware. At that moment, there were 135 unsuc-
cessful tests which were tentatively believed to be the fault
of various platforms under test, rather than the fault of candi-
date benchmarks.

In particular, the SPEC CPU suites contribute to opti-
mizer quality. End users and ISVs may feel relatively little
motivation to report optimizer bugs to compiler vendors, be-
cause it is easy to just turn down the dial on the optimizer.
(“Oh, it fails with —05? Well, does it succeed at —03?”).
The ISV may not want to spend the effort to determine the
root cause of the problem — e.g. program bug, standards vio-
lation, or actual compiler problem. But for SPEC CPU,
compiler developers are highly motivated to use the optimiz-
er, and highly motivated to find root causes.

Of course, compiler QA test suites include thousands
of tests, only a small portion of which are derived from
SPEC. This article does not mean to exaggerate SPEC’s QA
role. But the SPEC tests do provide a contribution to quali-
ty. Within the SPEC CPU subcommittee, if a benchmark
candidate is said to be “a compiler challenge”, that is usually
considered to be a compliment; and larger codes, such as
481.wrf and 483.xalancbmk, have posed challenges.

Large applications are available as open source soft-
ware. Finally, this article would be remiss if it did not em-
phasize the fact that much of the growth of the SPEC CPU
suites has relied upon the growth of the open source move-
ment. The credits for SPEC CPU2006 [5] list various
benchmarks that SPEC adapted in whole or in part from
open source software, and SPEC is grateful to the open
source community for the availability of these programs.
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