SPEC CPU Suite Growth: An Historical Perspective

John L. Henning, Sun Microsystems
Contact: john dot henning at acm dot org

Prehistory

Since 1989, the SPEC CPU benchmarks have aspired
to ambitious goals: fair, portable, comparable tests using the
compute-intensive portion of real applications. It may be
difficult today to remember just how much of a challenge
these goals presented when SPEC was first founded, or how
much of a break they were from previous industry practice.

A typical example, recently discovered while cleaning
a basement, is a 1985 Performance Guide. Containing 190
pages, it is well-produced, with glossy covers, many graphs
and tables, and a wide variety of tests. But for the most part,
performance results are presented with only sparse descrip-
tions of the conditions of observation (workload, versions of
software, details of the hardware). The document — which
obviously had much effort put into it and which would clear-
ly be of great interest to customers — is officially marked
“Internal Use Only”, although one suspects that this marking
may often have been ignored. Results are given for only one
vendor’s product line, with no competitive comparisons. If
a third party wanted to generate their own competitive com-
parisons, they would be unable to do so, because the source
code of the measured applications was not available.

At first glance, the exception appears to be four bench-
marks with public source code: the 1985 Performance Guide
does contain results for Dhrystone, LINPACK, Livermore
Loops, and Whetstone. But the competitive comparisons are
not given, and in some cases it is stated that the benchmark
has been modified, without giving details of how or why.
Finally, even if these four tests had been presented in a com-
parable form, these benchmarks are subject to the criticism
that they are small, organized around short loop “kernels”.

In short, although interesting performance work was
done by vendors in the 1980s, it tended to be opaque, non-
comparable, non-reproducible, and proprietary.

Comparable Results using Compute-Intensive,
Portable Source from Real Applications

By contrast, SPEC values transparent benchmarks that
can be compared across platforms and reproduced. For the
first 15 years, SPEC’s president, Kaivalya Dixit, evangelized
the SPEC development culture with the principle that propri-
etary interests should be subordinated to the interest in tech-
nically credible, fair, vendor-neutral benchmarks.[1] An
early, and often-repeated, SPEC motto is that “an ounce of
honest data is worth a pound of marketing hype”.

SPEC CPU benchmarks use portable source code with
strict limits on modifications. In contrast to earlier portable
benchmarks, SPEC CPU seeks real application code. Where
Whetstone was 284 lines long (including comments), the
first SPEC CPU suite included the Gnu C compiler as
001.gcc, with 138,901 lines of code, and 013.spice2g6 with
22,386.

Not all the benchmarks from that first set honored the
goal of being real applications: for example, 020.nasa7 was a
set of 7 kernels that were created as a benchmark, not as an
application. As later versions of the suite were introduced,
there have been others. But it is a substantial negative point
during discussion of a benchmark candidate to say that it is
“just a benchmark”, and it is a substantial positive point to
say “that’s a real application with real users”. Over the
years, SPEC has included more real application code and
proportionately less code that is “just” a benchmark.

SPEC trims I/O from CPU benchmarks, while preserv-
ing the intended areas of testing: CPU, memory, and compil-
er. What else should be trimmed? If a program has 10 ma-
jor modules, and the supplied workload uses only 3 of them,
should the other 7 be dropped? What about error pathways —
should those be trimmed? Recent suites have tended to keep
as much as practical, so as to remain closer to the original
application.

The desire for real applications, and the hesitancy to
trim them, are primary reasons why the SPEC CPU suites
have grown, as summarized in Figure 1. On the following
pages, Figures 2 and 3 detail the sizes of individual bench-
marks, first in lines of code and then in terms of number of
source files.

SPEC CPU History: KLOC 200
Lines of code x 1000 I
(incl. comments/whitespace) L 2500
- 2000
C+t
Oc - 1500
M Fortran L 1000
500
I 1 0
CPU89 CPU92 CPU9S CPU2000 CPU2006

Figure 1: Suite growth. The term “CPU89” is an
anachronism: it was then known as “SPECmark”, and
“CPU92” was then called “SPEC92”. But since 1995,
SPEC has often released more than one benchmark in a
single year, as it has expanded to include web services,
graphics, Java, etc. Therefore, for over 10 years, names
have used the form SPEC <benchmark> <year>. (Note:
there is no such thing as SPEC2006, nor did SPEC2000
ever exist.)

mailto:john dot henning at acm dot org

Figure 2:

KLOC (Lines of Code x1000, incl. comments/whitespace)

SPEC CPUS89
— then called
“SPECmark”
—did not
have a
distiction
between
SPECfp and
SPECint.

Benchmarks
marked “(i)”
in Figure 2
and Figure 3
were later
classifed as
integer, those
marked “(f)”
were later
classified as
floating point

Benchmark

£

CpPU89
001.gccl.35 (i)
008.espresso (i)
022.1i (i)
023.eqntott (i)
013.spice2g6 (f)
015.doduc (f)
020.nasa7 (f)
030.matrix300
042. fpppp (£)
047.tomcatv (£f)

CPU89 Totals

Benchmark

NwaDNhdOL R

32

CPU92 Integer
008.espresso
022.1i
023.eqgntott
026 .compress
072.sc
085.gcc

CPU92 FP
013.spice2g6
015.doduc
034 .md1ljdp2
039.wave5
047.tomcatv
048.ora
052.alvinn
056.ear
077 .md1ljsp2
078 .swm256
089.su2cor
090.hydro2d
093.nasa’7
094 . fpppp

CPU92 Totals

Benchmark

U oo d Ul d

wWrEAWOOLD

70

CPU95 Integer
099.go
124 .m88ksim
126.gcc
129.compress
130.1i
132.ijpeg
134.perl
147 .vortex

CPU95 FP
101. tomcatv
102.swim
103.su2cor
104 .hydro2d
107 .mgrid
110.applu
125. turb3d
141 .apsi
145. fpppp
146 .wave5

CPU95 Totals

OWINB_OBNMADN

w
N

116
17
19

4
2

.05

145

29
18
194

28
24
53

353

23

RWwN

25

w R

(8.}

25

2

Gwwuuobhnvy

41

_.c _.h Benchmark

CPU2000 Integer

164
175
176
181

197
252
253
254
255
256

.gzip
.Vpr
.gce
.mcf
186.

crafty

.parser
.eon
.perlbmk
-gap
.vortex
.bzip2
300.

twolf

CPU2000 FP

168

172
173
177
178
179
183

188

301

.Wupwise
171.swi

sSwim

.mgrid
.applu
.mesa

.galgel
.art

.equake
187.
. ammp
189.
191.
200.

.apsi

facerec

lucas
fma3d
sixtrack

CPU2000 Totals

Benchmark
CPU2006 Integer

400
401
403
429
445
456

462
464
471
473
483

.perlbench
.bzip2
.gcec

.mcf
.gabmk

. hmmer
458.

sjeng

.libquantum
.h264ref
.omnetpp
.astar
.xalancbmk

CPU2006 FP

410
416
433
435
444
447
453

459

481

.bwaves
.gamess
.milc

434.
.gromacs
436.
437.
.namd

.dealll
450.

zeusmp

cactusADM
leslie3d

soplex

.povray
454 .
.GemsFDTD
465.
470.
.wrf
482.

calculix

tonto
lbm

sphinx3

CPU2006 Totals

_.£ .£90 .c _.h
8 1
17 1
210 18
2 1
19 2
1 .5
18
62 24
59 12
53 15
5 .01
20 1
2
.4
.5
4
50 11
15
16
2
2
3 .2
3
60
48
7
63 81 542 102
_.f .£90 c _.h
124 46
7 1
485 36
2 1
190 7
33 3
13 1
3 1
46 5
17
2
6 1
1
466
13 2
37
23 72 13
3 87 13
4
3
100
14
14
44 97 26
12
165
1 .3
128 29 57
18 7
579 305

.C

23

31
4
296 251

82 17
27
141

1228 370 252 267

Figure 3: SPEC CPU Modules (source code files)

Benchmark .f _.c _.h Benchmark _.£f .£90 _.c
CPU89 CPU2000 Integer
001.gccl.35 (i) 79 94 164.gzip 14
008.espresso (i) 50 9 175.vpr 20
022.1i (i) 4 1 176.gcc 66
023.egntott (i) 26 2 181.mcf 1
013.spice2g6 (f) 13 3 186.crafty 39
015.doduc (f) 41 197.parser 17
020.nasa7 (f) 2 252.eon
030.matrix300 1 253.perlbmk 38
042. fpppp (f) 41 254.gap 32
047.tomcatv (f) 1 255.vortex 66
256.bzip2 2
CPU89 Totals 99 202 106 300 . twolf 5
CPU2000 FP
Benchmark £ _.c .h 168 .wupwise 22
CPU92 Integer 171 . swim 1
008 .espresso 44 7 172 .mgrid 1
022.1i 22 1 173.applu 1
023 .eqntott 22 2 177 .mesa 58
026.campress 1 178.galgel 38
072.sc 11 5 179.art 9
085.gCC 75 98 183.equake 1
CPU92 FP 187. facerec 11
013.spice2g6 24 2 188.ammp 28
015.doduc 41 189.1ucas 1
034 .mdljdp2 2 191.fma3d 101
039.waveb 2 200.sixtrack 124
047. tamcatv 2 301.apsi 1
048 .ora 2 CPU2000 Totals 150 151 476
052.alvinn 1
056.ear 16 6 Benchmark _.f£ .£90 .c
077 .mdljsp2 1 CPU2006 Integer
078.swm256 1 400 .perlbench 59
089.su2cor 2 401.bzip2 9
090 . hydro2d 2 403.gcc 155
093 .nasa’7 21 1 429 .mcf 11
094. fpopp 28 445 .gadbmk 67
CPU92 Totals 138 195 119 456 . hmmer 57
458 .sjeng 19
Benchmark £ .c .h 462.libquantum 16
CPU95 Integer 23? :ﬁ:z:; 2
099.go 17 4 473.astar
124 .m88ksim 98 24 483.xalancbmk 19
126.gcc 67 66 '
CPU2006 FP
129.c9mpress 2 1 410 .bwaves 5
130'}% 22 3 416.gamess 151
132.ijpeg 70 23 433 milc 68
134.perl 20 18 434:zeusmp 56
147 .vortex 66 57 435 . gromacs 7 124
CPUIS FP 436.cactusADM 6 265
101. tomcatv 1 437.leslie3d 1
102.swim 1 444 .namd
103.su2cor 2 447 .dealll
104 .hydro2d 2 450.soplex
107 .mgrid 1 453.povray
110.applu 1 454 . calculix 192 205
125. turb3d 1 459 . GemsFDTD 18
141.apsi 1 465. tonto 245
145. fpppp 38 470.1bm 2
146.wave5 2 481 .wrf 138 29
CPU95 Totals 50 362 196 482 .sphinx3 4
CPU2006 Totals 418 401 1194

21
61
14

172
58
31
57

10

65

504

.h

67
3
123
14
29
15
4
15
39
69
8
2

21

131
180

21
141
60
109
93

4
78
50

2

151

151

.C

85
11

.hh

738 1012

11

116 194

63
100

1278 1124 1206

In both
Figure 2 and
Figure 3, the
column
labelled:

. £ also in-
cludes .F

. £90 also in-
cludes:
.F90,
.int,
.use

.halso
includes
.def,
.inc

.Calso
includes

.Cpp
.CC

.hh .also in-
cludes

M hppa
.icc

The CPU2006 benchmarks mentioned in Figures 2 and
3 are described at [2], and earlier benchmarks at [3]. The
grand totals for each suite are:

KLOC |Modules
CPU89 214 407
CPU92 240 452
CPU95 425 608
CPU2000 811 1,432
CPU2006 3,334 5,621

Other factors affecting suite growth

In addition to the desire for real applications, and a hes-
itancy to trim them, other factors have also contributed to the
growth of the SPEC CPU suites in recent years.

Implementation languages have changed. The earlier
suites used Fortran-77 and C. More recently, Fortran 90 and
C++ have come into use. C++ is, of course, an Object-Ori-
ented Programming language; and the largest Fortran 90
program, 465.tonto, is written in an OOP style. While one
would not wish to cast aspersions on OOP, it is probably fair
to say that encapsulation, message passing, and abstraction
are somewhat unlikely to be associated with brevity.

Search programs have brought new codes. Both
CPU2000 and CPU2006 solicited contributions. The
“Benchmark Search Programs” were advertised via the
SPEC web site, relevant Usenet groups, and Computer Ar-
chitecture News.[4] Contributors provided source code and
workloads, assisted with porting, helped solve validation is-
sues, and were compensated up to $5000. A list of success-
ful entries to the CPU2006 benchmark search program may
be found at [5].

“More is better.” The CPU subcommittee has had
several discussions of whether having more benchmarks
makes a better suite. Several concerns have been raised to
argue against large suites. (1) SPEC CPU2006 has a grand
total of 3.3 million lines of code. From a maintainability
perspective, having this much code is a risk. It is a certainty
that any program set this large has bugs. SPEC hopes that
the worst of them have been shaken out during testing, and
that the remainder will not affect the usefulness of perfor-
mance results. But clearly, a larger suite carries more oppor-
tunities for bugs. (2) As the number of benchmarks grows, it
becomes increasingly likely that hardware designers will not
bother to, or will not be able to, simulate the entire suite.
(3) As the number of benchmarks grows, some researchers
may even complain of “duplication” in the suite. [6]

Despite these concerns, the majority of the subcommit-
tee tended to agree that “more is better”, for several reasons.
(1) Having more benchmarks allows more application areas
to be represented. (2) Having more benchmarks allows
more programming styles to be represented. Consider, for
example, 416.gamess vs. 465.tonto: both are chemistry
codes. Both are written in Fortran. ONE OF THEM IS
WRITTEN IN UNABASHED OLD-STYLE FORTRAN,
AND HAS BEEN AROUND SINCE BEFORE THE IN-
VENTION OF LOWER CASE LETTERS. The other is far
more recent, and makes unabashed use of the features of
Fortran-95 (with grudging support for Fortran-90). After
discussion, the subcommittee decided that both program-

ming styles deserve representation. (3) Having more bench-
marks may tend to encourage compiler developers to imple-
ment optimizations that help a wide variety of programs,
while decreasing the payoff from more narrowly targeted
optimizations. (4) Although two programs may appear to
“duplicate” each other on today’s hardware, there is always
the possibility that one of them — and only one of them —
may turn out to be sensitive to some difference in tomor-
row’s system implementations.

Larger codes are useful for compiler QA. The SPEC
CPU suites are performance packages, not quality assurance
packages. Nevertheless, it is clear that SPEC CPU develop-
ment efforts expose bugs in both candidate benchmarks and
in compilers. For example, as of February 28, 2005, SPEC
had testing reports for 52 candidate benchmarks on 33 plat-
forms, with various versions of compilers, operating sys-
tems, and hardware. At that moment, there were 135 unsuc-
cessful tests which were tentatively believed to be the fault
of various platforms under test, rather than the fault of candi-
date benchmarks.

In particular, the SPEC CPU suites contribute to opti-
mizer quality. End users and ISVs may feel relatively little
motivation to report optimizer bugs to compiler vendors, be-
cause it is easy to just turn down the dial on the optimizer.
(“Oh, it fails with —05? Well, does it succeed at —03?”).
The ISV may not want to spend the effort to determine the
root cause of the problem — e.g. program bug, standards vio-
lation, or actual compiler problem. But for SPEC CPU,
compiler developers are highly motivated to use the optimiz-
er, and highly motivated to find root causes.

Of course, compiler QA test suites include thousands
of tests, only a small portion of which are derived from
SPEC. This article does not mean to exaggerate SPEC’s QA
role. But the SPEC tests do provide a contribution to quali-
ty. Within the SPEC CPU subcommittee, if a benchmark
candidate is said to be “a compiler challenge”, that is usually
considered to be a compliment; and larger codes, such as
481.wrf and 483.xalancbmk, have posed challenges.

Large applications are available as open source soft-
ware. Finally, this article would be remiss if it did not em-
phasize the fact that much of the growth of the SPEC CPU
suites has relied upon the growth of the open source move-
ment. The credits for SPEC CPU2006 [5] list various
benchmarks that SPEC adapted in whole or in part from
open source software, and SPEC is grateful to the open
source community for the availability of these programs.

References

[1] See www.spec.org/spec/kaivalya

[2] John L. Henning (ed.), “SPEC CPU2006 Benchmark De-
scriptions”, Computer Architecture News, Volume 34,
No. 4, September 2006.

[3] www.spec.org/<suite name>, e.g. www.spec.org/cpu95s

[4] The CPU2006 search program page is archived at
www.spec.org/cpu2005/search

[5] www.spec.org/cpu2006/docs/credits.html

[6] See for example A.Phansalkar, A. Joshi and L. John,
“Subsetting the SPEC CPU2006 Benchmark Suite”
Computer Architecture News, Volume 35, No. 1, March
2007

http://www.spec.org/cpu2006/docs/credits.html
http://www.spec.org/cpu2005/search
http://www.spec.org/cpu95
http://www.spec.org/<suite
http://www.spec.org/spec/kaivalya

	Figure 3: SPEC CPU Modules (source code files)
	Figure 2: KLOC (Lines of Code x1000, incl. comments/whitespace)
	SPEC CPU Suite Growth: An Historical Perspective
	Prehistory
	Comparable Results using Compute-Intensive, Portable Source from Real Applications
	Other factors affecting suite growth
	References

