C++ Benchmarks in SPEC CPU2006

Michael Wong

IBM

michaelw (at) ca.ibm.com

Abstract

In SPEC CPU2006, there are three C++ integer bench-
marks and four floating-point C++ benchmarks. This pa-
per describes the work of incorporating C++ benchmarks
into SPEC CPU2006. It describes the base language stan-
dard supported and the basis for run rules adopted to
maintain an even playing field for different compilers. It
also describes issues that complicate porting C++ bench-
marks. It describes some of the C++ Standard compliance
issues that were technically interesting during the bench-
mark development phase, using as examples the behavior
of const-correctness, nested class access of private mem-
ber of enclosing class, and unneeded template instantia-
tions.

C++ Benchmark Selection Challenges

SPEC CPU2006 has seven C++ benchmarks compared
to SPEC CPU2000’s one. The committee viewed it as es-
sential that these benchmarks be ported in a way that was
fair to all compilers and would allow the code to conform
to the official C++ Standard. This paper describes some of
the characteristics of these C++ benchmarks, and gives an
account of the C++ Standard-specific issues that were en-
countered during the porting of some of these bench-
marks. It also describes specific conditions that need to be
satisfied to port other C++ benchmarks in the future be-
cause of the intrinsic differences that C++ code has versus
Fortran and C code. Much of these differences mean that

porting adds an extra layer of complexity to what is already a
difficult process.

Benchmarks are useful to people who buy computers. They
want them to tell about performance on a set of target applica-
tions. They are useful to people who sell computers. They tell
enough about the performance to get the buyer’s attention.
They are also useful when designing computers and compilers.
They represent the important details of applications so that they
can be used as concise distillations in the design process. Thus
the author was interested in supporting the addition of not just
more C++ benchmarks, but C++ benchmarks of quality and
breadth, to represent recent changes in the usage of C++, and to
be relevant for the future.

SPEC prefers to develop CPU benchmarks from actual end-
user applications, instead of using synthetic benchmarks. Mul-
tiple vendors use the SPEC CPU suite and support it. It must be
highly portable and as such the specific language standard
seems to be the best way to enforce such portability.

A problem is that C++ as a Standard has many dark corners
that make it difficult to enforce commonality across multiple
compilers and platforms. The benchmark candidate source may
contain errors. Furthermore, each compiler may have its own
unique peculiarities based on its history, which complicates the
task of determining correct, acceptable behavior. The easiest,
most portable benchmarks may end up being the lowest com-
mon denominator of C++ applications. They would be too
much like C, rather than testing features specific to C++. This
would not benefit the C++ community as the benchmark candi-
dates would use less interesting, less advanced, non-controver-

Table 1: C++ Benchmark Characteristics

Benchmark |Suite |Files|Bytes Lines |Symbols|/Comments
252.eon Int 2000, 326/ 1,222,099 41,188 1,527| The only C++ benchmark in SPEC CPU2000
471.omnetpp |Int2006| 155 1352414 47910 1,428/lt Will encourage the OS to speed up malloc and may

encourage optimizers to perform malloc optimization.
473.astar Int 2006| 20 108,557 5,849 176|1t makes very little use of C++ features.

A large e-business app that also uses STL with very
483.xalancbmk|Int 2006 | 1773| 18,616,140| 553,643 10,426|large data input set. It will push most stack memory to

the limit while encouraging malloc improvement.
444.namd FP2006 33 145,474 5,322 410|A good HPC benchmark but somewhat simple
447.dealll FP2006 | 452| 7.160.511] 198,649 4.801 Uses Boost 11brques and complex ts:mplgte techniques.

Best representative of future C++ directions.
450.soplex FP2006 | 124| 1,157,229 41,435 195|Not very high on usage of C++ features

It is representative of C++ the way it is used currently.
453.povray FP2006| 2101 3,738,706] 155,170 6,761 Has a potential single hot spot in the noise function

sial areas of the language, as well as rarely stressing the
compilers involved.

SPEC CPU members were unwilling to settle for the
lowest common denominator of C++ applications. The
world of C++ is evolving rapidly beyond object-oriented
programming of the ‘90s. Recent developments in generic
programming and meta-template programming have
shown C++ to be more capable than suspected. New pro-
gramming styles such as expression templates allow C++
to expand to scientific computations traditionally reserved
for Fortran. The Boost libraries [1] give C++ an experi-
mental leading-edge arena to test new libraries developed
by expert C++ programmers before their incorporation
into the Standard.

C++ characteristics make its code look different from
C code when viewed via intermediate representation to an
optimizer. The code pattern that is generated through deep
virtual functions, templatized inheritance, and meta-pro-
gramming is different from that generated through C code.
Even though we are reasonably assured of good code gen-
eration for basic cases such as simple virtual function
calls, anything more complex is challenging to optimizers.
A new set of strenuous C++ benchmarks supports the pro-
gression of this science for C++ applications, thus benefit-
ing all C++ users.

SPEC CPU2000 has only one integer C++ benchmark,
known as 252.eon. All others were C or Fortran bench-
marks. This has now been improved in SPEC CPU2006,
where there are three C++ integer benchmarks and four
floating-point C++ benchmarks. Table 1 gives their names
and a few comments about their nature. A more thorough
description can be found at [2]. The first row in the table
is the only C++ benchmark in SPEC CPU2000. All the
following values show the increased size of the various
benchmarks of SPEC CPU2006.

C++ Standard Updates

For the C++ language, the official standard is now
ISO/IEC 14882:2003 [3] which is effectively the 1998
C++ Standard (ISO/IEC 14882:1998(E)) with the defect
fixes applied through Technical Corrigendum 1 (TC1).
Although it is commonly known as the 2003 Standard,
programmatically it is still the 1998 Standard. That is, a
program can check the macro cplusplus and see
that it still retains the old value, which is 199711 (be-
cause it was approved in Nov 1997). The reason is that
the TC1 additions are mostly relaxing changes from the
1998 Standard: programs that used to fail can pass if they
are valid by the 2003 changes.

Vendor compliance is a matter of corporate policy and
the market that they serve. Some have moved their code to
2003. Some have moved beyond it by addressing defects
that are accepted in the C++0x draft while others have
stayed much closer to the 1998 Standard. This forms one
of the difficulties of porting C++ and the reason some lati-
tude is needed because different compilers may position
themselves on different parts of the continuum of confor-
mance.

Currently, the C++ Standard Committee is working to-
wards revising the Standard for 2009. This is tentatively

named C++0x [4]. A number of Working Papers propose ideas
such as Concurrency [5], Concepts [6], and Garbage Collection
[7] to be added into C++0x. These features could significantly
change the way C++ is programmed in the future. The C++
Standard committee is also considering other key improve-
ments to the language to keep it competitive with other lan-
guages that have evolved since its last Standardization in 1998.
This work will likely impact the way C++ is programmed for
the next ten years and the relevance of C++ in SPEC CPU
benchmarks.

SPEC references language standards in the CPU2006 Run
Rules [8] in Section 2.2.1, the “safety” rule, which was updated
for CPU2006 to reference C99, Fortran 95, and C++98. Be-
cause of differences in compiler practices, and because the
C++ Standard is programmatically still the 1998 Standard,
SPEC chose to reference the 1998 Standard for C++. Under
the safety rule, if a compiler can be shown to be conformant to
the referenced standard, then that is considered an adequate de-
fense of safety. Note that SPEC will also accept later standards
than the one referenced, so if a compiler behavior conforms to
the ISO-published C++2003, that is also an adequate defense
of safety.

Leveling the Playing field with RTTI

Another SPEC CPU2006 rule change relating to C++
should be discussed. Section 2.2.1 says:

Note that for C++ applications, the standard calls for sup-
port of both run-time type information (RTTI) and excep-
tion handling. The compiler, as used in base, must enable
these.

For example, a compiler enables exception handling by
default; it can be turned off with —-noexcept. The
switch ——noexcept is not allowed in base.

For example, a compiler defaults to no run time type infor-
mation, but allows it to be turned onvia —-rtti. The
switch —-rtti must be used in base.

This rule was adopted to create an even playing field for differ-
ent compilers with different defaults on accepting Runtime
Type Identification (RTTI) and Exception Handling. One of
C++’s guiding design principles, as described in Bjarne Strous-
trup's Design and Evolution of C++, [9] is the zero-overhead
principle:

What you don't use, you don't pay for (zero-overhead
rule).

Stroustrup wants to avoid:

the overhead of supporting supposedly advanced features
[which] is distributed over all the featuresin the language.
For example, all objects are large to hold information
needed for various kinds of housekeeping.

A C++ feature should introduce no overhead into programs that
do not use it.

If in doubt, provide means for manual control.

Although the zero-overhead rule is not codified in the C++
Standard, its spirit has been retained by many compilers. It said
that most compilers should offer a switch to turn on/off these
features. In practice, the industry support varies: some compil-
ers default to on, and some compilers default to off. But in

most cases, some kind of control over exception handling
and RTTI is offered because they are deemed to be the
easiest to remove, and have the most beneficial result
from manual control. Some other features cited by
Stroustrup — e.g. virtual functions, multiple inheritance,
and templates — rarely have manual control because they
are either too tightly integrated into the compiler and thus
hard to offer manual control, or they have little benefit
from removal anyway, since there is no detrimental effect
if the user does not invoke them directly. For example,
unless the user declares a virtual function, or template in-
stantiation mechanism, the overhead machinery, which in
these cases is the virtual function table, and the code bloat
from multiple instantiations, will not be there.

But exception handling and RTTI do incur overhead
even if not used. For exception handling, extra state infor-
mation or range values must be maintained. For RTTI, ad-
ditional extended type information has to be added to the
virtual function table or class bodies. These waste either
space or code and may do so even if no code relating to
the feature exists. So vendors have been known to offer
them as default to be off or on, as their implementation
design requires. Almost every compiler offers this control.
Part of the problem is that this default state is not uniform.

For example, the IBM® XL C/C++ Enterprise Edition
V8.0 for AIX® compiler [10] by default always has ex-
ception information on, because an exception mechanism
usually exists in most standard library headers and thus
cannot run without it. But RTTI is turned off by default so
that unless the wuser uses one or more of
dynamic_cast, static cast, const cast,
reinterpret cast, or typeid, the extra infor-
mation is not built.

In practice, the waste in space may be small depending
on the design, but it is possible for this to affect run re-
sults. The SPEC CPU subcommittee has consciously lev-
eled the playing field by mandating these states to be on
in base as a rule. This rule avoids the unfair case where
some compilers simply have no way of turning RTTI or
Exception Handling off. Note that the C++ Standard
mandates the availability of these features so a compliant
compiler must make them available.

Porting a C++ Benchmark

Surprisingly, most programs are not good benchmark
candidates regardless of the language. Some examples of
problems are workloads that cannot be consistently and
easily verified, or systems intrinsically tied to some non-
standard display code, or benchmarks that have one hot
loop that can be too easily targeted for a narrow optimiza-
tion. These common characteristics rarely receive much
favorable support from the majority of SPEC members.

C++ adds additional constraints. The complexity of
the C++ language makes most compilers’ level of correct-
ness and conformance non-uniform. One compiler may
conform to the 1998 Standard, another may conform to
the 2003 level, while a third may move support beyond
that. All compilers also tend to add extensions to support
their set of customers. The most problematic of these are
peculiarities in the compiler that may be considered as

bugs, or at least as historical artifacts, in addition to such bugs
or artifacts in the benchmark source code. This means that
porting will often have to battle potentially incompatible com-
piler peculiarities, and the more complex the code, the more
likely that these will become the biggest problem. Consequent-
ly, this was the largest class of problems in porting C++ bench-
marks.

C++ also has a predominant theme of using libraries; but
SPEC prefers to use a standalone executable. Apache Xalan-
C++ is one such library that supports text to XML to HTML
transformations. It contains an XML parser based on Version
2.5 of Xerces-C++. The benchmark version, 483.xalancbmk,
uses the XalanTransform program, which applies an XSLT
stylesheet file to an XML document file and writes the trans-
formation output to an output file. This was based on Version
1.8 of Apache Xalan-C++.

The original code was already quite portable as the authors
maintained the port using macros and platform-specific files as
needed. The major issue was the benchmark data. Most of the
work of developing the benchmark was in finding appropriate
data of acceptable content and length to create a desired run-
ning time.

483.xalancbmk was the result of packaging Xalan-C++ into
an executable program and using as input an appropriately
large XML file and the correct stylesheet. The issue with
benchmark data is because parsing is such an efficient process
that most XML transformation occurs rapidly even though ver-
ification was turned on, which effectively reprocesses the in-
put. The quality and runtime of benchmark data is one of the
major problems with any benchmark. The runtime must be suf-
ficiently large today to take account of future machine speed
improvement. On the processors used during suite develop-
ment, the runtime turns out to be about 20-30 minutes for refer-
ence data, 25% of the reference time for train data, and less
than 2 minutes for test data. A large XML sample was actually
hard to find. Some of the largest publicly available XML files
were the Shakespeare public domain files and even these ran
within three minutes, which was still insufficient. Instead, an
XML generator was used to generate a 50 Megabyte file,
which ran in about 30 minutes on a (year 2004 vintage) IBM
pSeries® POWERS5™ system.

The train data is used for training for Profile-Directed Feed-
back runs. This enables the compiler to learn typical branch
choices and optimize for the most likely path. It usually should
not be a subset of the reference dataset. So 483.xalancbmk
uses The Tragedy of Antony and Cleopatra, which was made
available by Moby Lexical Tools [11].

The library deal.II [12] is a C++ library targeted at adaptive
finite elements and error estimation. It makes interesting use of
the latest C++ programming techniques. This includes template
programming and the Boost C++ library [1]. It uses elements
of the Boost library on preprocessor, shared ptr, tu-
ple, utility, static_assert, and
type traits. Boost libraries are high-quality peer reviewed
libraries mostly written by members who participate on the
C++ Standard committee. They are designed to be platform-in-
dependent, but tend to rely on conformance to the darker cor-
ners of the C++ Standard. The code is actually quite standard
compliant, but not every compiler is fully aware of all the sub-
tle corners of the Standard. This makes it also one of the most
difficult benchmarks to compile because each compiler has dif-

ferent amounts of support of the template section of the
C++ Standard. The acceptance of this benchmark should
promote better long-term optimization of these unique
C++ features. These template techniques are beginning to
find their way into mainstream programming methodolo-
gies as well as numerical methods.

The remainder of this paper describes some of the
C++ Standard-compliant issues that were technically in-
teresting during the benchmark development phase and il-
lustrate these code examples and their resolution. These
issues include (1) the behavior of const-correctness, (2)
nested class access of private member of enclosing class,
and (3) unneeded template instantiations.

1. Const-correctness of library string returns:

This case is actually an error in the source code that
can be compounded by errors in a C++ vendor’s imple-
mentation of a C library function. This leads to invalid
code being accepted by an invalid implementation, com-
plicating the discovery of the problem. The original
source is incorrect and needs to be changed. Compilers
that compile the original code without issuing a fatal error
will most likely also need to change their header file.

The problem: Code such as Figure 1 Part A, if com-
piled with a C++ 98 Standard-compliant header file, caus-
es the expansion shown in Figure 1 Part B, because Stan-
dard section 21.4 paragraph 10 says [white space adjusted
for emphasis]:

The function signature strstr(const char®, const
char*) is replaced by the two declarations:

char*
char*
char*
char*

const char* strstr(const
const

char* strstr(
const

s1,
s2);
sl,
s2);

both of which have the same behavior as the original dec-
laration.

This leads to the error shown in Figure 1 part C.

The rationale: If a compiler compiles this without error —
and a few did — it is exposing a security hole. This causes the
code to return a non-const pointer into the first argument
(which came in as a const qualified type in the first argument),
and now we can possibly maliciously change it through £ be-
cause f is non-const qualified.

C++ 98 compliant compilers issue a severe error indicating
that assignment into £ causes a const to be assigned into a non-
const, which is an error because, by allowing a non-const
pointer to reference the data of a const pointer, we are violating
an implied constraint of the const pointer. This would create a
security hole because we are granting greater permission than
the data declaration specifies. The Standard permits an increase
in constness in conversions but not a decrease.

The C++ Standard in section 21.4 paragraph 10 indicates
that the header file should have declaration for strstr func-
tions that preserve const safety. When the first prototype is
used, it preserves const safety (return is const and first argu-
ment is const) and when the second prototype is used, the input
is non-const anyway so the return can be non-const.

The code fix: Code of this form can be trivially fixed by
adding a const qualifier to the returned type, as shown in Fig-
ure 1 Part D. This fix will not break the conforming compiler

Figure 1: Const Correctness

A. The original code:
1 #include <string.h>
2 int main () {
3 const char * a="fefeeff";
4 const char * b="e";
5 char *f=strstr(a,b);
6 }

B. Expansion from C++ header file:

extern const char *strstr(const char *,

extern "C++" {
inline char *strstr(char * sl,
return (char *) strstr((const

}
}

C: Generated Emror:

test.cc, line 5: Error:

D: The fix:
int main () {
const char * a="fefeeff";
const char * b="e"
#if defined (SPEC_CPU)
const char *f=strstr(a,b);
#else
char *f=strstr(a,b);
#endif

Cannot use const char* to initialize

const char *);

const char * s2){
char *) sl, s2);

char*.

or the header file of compilers that don't conform to the
Standard. They will continue to compile it as before.
Const-correctness is an often-neglected aspect of older
code and is recently championed as the way towards
greater security. The biggest problem is that it is viral,
meaning that once started, it must be propagated down the
call path, which often requires a large amount of code
change. This cannot be avoided if compliance is required.

2. Nested class can access private member of en-
closing class

Nested class access is disallowed in the C++ 1998 and
2003 Standard but is in the draft for the future C++0x [4]
Standard through the Defect 45°s proposed resolution [12]
accepted in April 2001. Some compilers have moved ag-
gressively ahead to accept some of these defects’ pro-
posed resolutions (likely due to customer demands). So
even though the SPEC Run Rules only reference C++
1998, it was decided that some latitude should be granted
to accept this code modification using a macro to control
compilation. The original C++ 1998 Standard says in
Section 11.8 paragraph 1 (white space, comments adjusted
in the excerpt):

The members of anested class have no special access
to members of an enclosing dass, nor to classes or
functions that have granted friendship to an enclosing
class; the usual access rules (clause 11) shall be
obeyed. The members of an enclosing dass have no
special access to members of a nested class, the usual
access rules (clause 11) shall be obeyed. [Example:

class E {
int x;
class B { };
class I {
B b; // error:
int y;
void f(E* p,
{
p->x = 1i;
}
}i
int g(I* p)
{
return p->y;
vate

}

E::B 1is private
int i)

// error: E::x 1s private

// error: I::y is pri-

}i
This decision was reversed in the proposed resolution for
Defect 45 and is part of the draft for C++0x:

A member of aclass can also access all names as the
class of which it is amember. A local class of a mem-
ber function may access the same names that the
member function itself may access. ... A nested class
is a member and as such has the same access rights
as any other member.

The test case: The test case is as follows:
class cQueue

{
private:
struct QElem

{

QElem *prev, *next;
}i

public:
class Iterator

{
private:
QElem *p; // Error (?)
bi
bi

Compilers that conform to the original 1998 Standard issue
an error message indicating that p cannot access a private
member. Compilers that have applied the proposed resolution
for Defect 45 will compile this.

The code fix: This kind of code is actually common. It
shows up in 453.povray and 471.omnetpp, and much newer
code will tend to have this and expect compilers to allow it.
The rationale indicates that it is intuitive. The agreed SPEC
code fix is to add a macro to increase the class access of the
private member to public for compilers that conform to the
original Standard (i.e. which have not implemented the pro-
posed resolution for Defect 45):

class cQueue
{
#if defined
CESS)
public:
#else
private:
fendif
struct QElem
{

(SPEC_CPU_NO_NESTED_ CLASS_ AC-

QElem *prev, *next;

}i

Admittedly, this is kind of a sledgehammer fix but there
does not appear to be any other way around it. The disadvan-
tage of this fix is that it exposes private data members to the
world by making them public. So in the real world, one should
use this fix only for the references that require it rather than
make everything public. Since we are dealing with a stan-
dalone benchmark, it is unlikely to pose a security risk

3. Some compilers instantiate template member func-
tions too eagerly leading to code bloat.

During the porting of deal.Il [13] to create the benchmark
447 dealll, it was discovered that some compilers instantiate
certain virtual functions too eagerly, but that an allowed ambi-
guity in the C++ Standard permits this behavior. Templates in
C++ are classes or functions that do not use actual types or val-
ues, but generic placeholders. Templates can later be “instanti-
ated” by replacing the placeholder by a concrete type or value.
In addition, programmers can provide “explicit specializations”
of templates for certain cases if the arguments with which a
template is instantiated match certain conditions.

The case in question with 447.dealll is how eagerly the
compiler should instantiate a template when it sees the tem-
plate used with a concrete argument. C++ implicit instantiation
is based on lazy instantiation, i.e. the language mandates that
compilers only instantiate what it has to and leave as much as
possible uninstantiated until there is no choice. The rules that

codify this behavior are purposefully ambiguous in some
respects, however. For demonstration of one of the corner
cases consider this code:

1 template <typename T> struct A {

2 typedef int type;

3 virtual void foo ();

4 };

5

6 template <typename T> void A<T>::foo () {
7 T() .compilation yields an error();

8 }

9

10 template <typename T> struct Unrelated ({

11 void foo (const typename A<T>::type)
const;

12 };

13

14 template <> void Unrelated<int>::foo

15 (const A<int>::type) const;

Line 14 contains the declaration of an explicit special-
ization of function template "Unrelated" with template pa-
rameter int using call parameters "const
A<int>::type". In other words, it tells the compiler
that a definition of this function for the template argument
int can be found somewhere else. In order to see what
the type "A<int>: :type" refers to, the compiler has to
implicitly instantiate "A<int>".

When a class template is implicitly instantiated, the
declarations of its members are instantiated as well, al-
though the corresponding definitions are not (i.e. the func-
tion bodies are not compiled). However, there are a few
exceptions to this. First, if the class template contains an
anonymous union, the members of that union's definition
are also instantiated. A second exception concerns default
function arguments. The third exception (and in this con-
text the only one that is relevant) deals with virtual mem-
ber functions: their definitions may or may not be instanti-
ated as a result of instantiating a class template. Some im-
plementations will, in fact, instantiate the definition be-
cause they instantiate the virtual function tables that en-
able the virtual call mechanism. Virtual function tables
are lists of pointers to member functions. If they are in-
stantiated and written into the object file, it is also neces-
sary to instantiate the member function definitions, i.e. to
compile the function bodies with template arguments sub-
stituted, to avoid undefined references in linkable entities.
The instantiation of virtual function tables and thereby
virtual function templates is specifically allowed by Para-
graph 9 of Clause 14.7.1 of the C++ Standard:

An implementation shall not implicitly instantiate a
function template, a member template, a non-virtual
member function, a member class or a static data
member of a class template that does not require in-
stantiation. It is unspecified whetheror not an im-
plementation implicitly instantiates a virtual member
function of a class template if the virtual member
function would not otherwise be instantiated. [...]

The reason this ambiguity exists may be because by
the time this paragraph was put to words, there remained
some implementations that could and would instantiate
the virtual member functions. So in order to not break

with previous legacy implementation, and since one of the con-
siderations that Standards have to take into account is existing
practice, it was felt that there was no need to specifically fur-
ther restrict this paragraph.

On the other hand, in the program above, the instantiation
of the virtual function table entails the instantiation of
"A<int>::foo" which fails because line 7 does not make
sense for “T=int”. In the original program, this was no prob-
lem since a specialization for “A<int>: : foo” was provided
later on, but not before the time it was needed in line 14 by
some compilers.

The deal.Il library is a clever template program that sup-
ports finite element computations at 1d, 2d, and 3d. The ele-
gance of generic programming allows one to write functions
independently of the space dimension in order to test with
cheap simulations in 1d or 2d, and later run realistic 3d simula-
tions with the same code. The generic part of the code looks
like this:

template <int dim> class Triangulation {
typedef int local type;
void foo (local type);
virtual void bar ();

}r

In some cases, however, 1d, 2d, and 3d algorithms and data
structures may differ, and are implemented as explicit special-
izations. The SPEC benchmark 447.dealll uses 3d, but declara-
tions of explicit specializations for the 1d and 2d case remain
from the original deal.Il library, as in
template <> void Triangulation<l>::foo
(Triangulation<l>::local type);

The problem is that these explicit specializations trigger the
case discussed above, i.e. some compilers may want to instanti-
ate “Triangulation<1>::bar” or yield linker errors instead. The
necessary function bodies exist in the deal.ll library, but are
guarded by preprocessor #if directives, based on the dimen-
sion case:

#1f deal II dimension == 1
template <>
void Triangulation<l>::bar() {
do_something(); }
#else
template <int dim>
void Triangulation<dim>::bar () {
do_something else(); }
#endif

This means that in a 2d or 3d build of 447.dealll, the definition
for the 1d case is not available because the authors assumed it
was not needed. Compilers that instantiate the virtual function
table for the 1d “Triangulation® class need it, however.
There are three solutions to this problem. (1) Alter all of
447.dealll to remove the declarations of explicit specializa-
tions. The disadvantage of this approach would be a tremen-
dous amount of editing. (2) Include the definitions of the 1d
and 2d specializations as well, i.e. remove the #if guards. This,
again, would require much editing and furthermore would
force compilers that do not instantiate virtual function tables to
go through thousands of additional lines of code, leading to
code bloat. (3) Build the program in three passes, the first pass
setting the variable deal II dimension to 1, the second
pass to 2, then 3. In this way the unresolved references can be

satisfied by the Explicit Specialization machinery, al-
though no 1d or 2d function definition will ever be called.
Solution 3 was chosen because it was fast and it was more
portable to all compilers that need this approach. The de-
fault is to build once, but the triple compilation can be en-
abled by adding the following variable to the 447.dealll
portion of a SPEC config file:

explicit dimensions = 1

The result is an executable that contains not only the 3d
functions, but also function instantiations for 1d and 2d,
even though the latter are never called. Consequently, this
method does not produce a different runtime behavior;
hence the difference in build is performance neutral.

There are other portability challenges for 447.dealll.
The benchmark uses cutting-edge, standard-compliant
C++ code, which means not all compilers can compile it.
The state of C++ compiler support for the template sec-
tion of the C++ Standard varies. This is partly the result of
the changes injected and the complexity of the changes
such that each compiler may interpret them differently.
The SPEC config file can include flags that affect various
capabilities and known workarounds if a compiler is
known to be unable to support a particular construct. This
is described in the text file
447.deallI/Docs/447.dealll Config.txt.

Conclusion

As shown in this paper, the porting of C++ bench-
marks is complicated by the fact that compiler implemen-
tations can be incorrect, which leads to difficult-to-discov-
er violations (case 1, above); there are ongoing changes in
the C++ Standard that allow code to be acceptable in mul-
tiple forms (case 2); or there could even be ambiguity in
the Standard that leads to conformant but multiple compi-
lation possibilities (case 3). The SPEC CPU benchmarks
must work within these known boundaries. SPEC
CPU2006 has done an exceptional job of following these
somewhat difficult parameters and producing a bench-
mark suite that is still performance neutral.

Most important is that SPEC CPU2006 has not taken
the lowest common denominator of C++ code, which
would have made it easier to get the widest portability but
rendered SPEC CPU2006 irrelevant as a measurement
tool for decision making. Instead, it has taken on the chal-
lenge of including a spectrum of C++ code from basic in-
heritance to generic programming to template program-
ming in order to ensure coverage of most of the tech-
niques that will be used in real code for the near future.
This allows C++ to continue to enjoy that rare community
of researchers and in-the-trenches programmers who ac-
tively collaborate to update the language. Not many other
languages have such an active evolutionary focus.

Acknowledgements

Much of this paper would not have been possible with-
out the encouragement of Alan Mackay. I also thank the
following individuals who made valuable contributions
during the SPEC benchathon and recommendations dur-
ing the preparation of this paper: Christopher Cambly,

Robert Klarer, Sasha Kasapinovic, Yan Liu, Wolfgang
Bangerth, Jim Mclnnes, June Ng, Jeff Hamilton, Neil Graham,
Andrew Godbout, Roland Koo, Anne James, Alex Ross, Steve
Clamage, Darryl Gove, and John Henning.

The views presented in this paper are those of the author
and not of IBM Corporation or any of its affiliates.

References

[1] http://www.boost.org

[2] J. Henning (ed.), “SPEC CPU2006 Benchmark Descrip-
tions”, Computer Architecture News, Volume 34, No. 4,
September 2006. Also posted at www.spec.org/cpu2006

[3] The C++2003 Standard is ISO/IEC 14882:2003(E), avail-
able via http://webstore.ansi.org/ansidocstore/.

[4] C++0x: http://www.artima.com/cppsource/cppOxP.html

[5] Concurrency: http://www.open-std.org/
jtcl/sc22/wg21/docs/papers/2006/n1942 . html

[6] Concepts: http://www.open-std.org/
jtel/sc22/wg21/docs/papers/2006/n2081.pdf

[71 Garbage Collection: http://www.open-std.org/
jtcl/sc22/wg21/docs/papers/2006/n1943.pdf

[8] http://www.spec.org/cpu2006/Docs/runrules.html

[9] The Design and Evolution of C++, Bjarne Stroustrup, Ad-
dison Wesley 1994, Pg. 121

[10] http://publib.boulder.ibm.com/infocenter/comphelp/
v8v101/index.jsp

[11]Moby: http://www.cis.strath.ac.uk/~dce/MIA/
assess/data/data_set O1/shaksper.htm

[12] See the C++ Standard Core Language Active issues,
http://anubis.dkuug.dk/jtc1/sc22/wg21/ docs/cwg_defect-
s.html#45

[13]http://www.dealii.org/

Trademarks

IBM, AIX, pSeries, and POWERS5 are trademarks or registered
trademarks of International Business Machines Corporation in the Unit-
ed States, other countries, or both.

© Copyright IBM Corporation, 2007. All rights reserved.

Notices

Any references in this article to non-IBM Web sites are provided
for convenience only and do not in any manner serve as an endorse-
ment of those Web sites. Use of those Web sites is at your own risk.

Neither International Business Machines Corporation nor any of its
affiliates assume any responsibility or liability in respect of any results
obtained by implementing any recommendations contained in this arti-
cle. Implementation of any such recommendations is entirely at the im-
plementor’s risk.

Publication of this article, including any recommendations con-
tained in this article, does not confer any license or other right under
any patent or patent application owned by International Business Ma-
chines Corporation or any of its affiliates.

http://www.dealii.org/
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/cwg_defects.html#45
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/cwg_defects.html#45
http://www.cis.strath.ac.uk/~dce/MIA/assess/data/data_set_01/shaksper.htm
http://www.cis.strath.ac.uk/~dce/MIA/assess/data/data_set_01/shaksper.htm
http://publib.boulder.ibm.com/infocenter/comphelp/ v8v101/index.jsp
http://publib.boulder.ibm.com/infocenter/comphelp/ v8v101/index.jsp
http://www.spec.org/cpu2006/Docs/runrules.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1943.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1943.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2081.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2081.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1942.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1942.html
http://www.artima.com/cppsource/cpp0xP.html
http://webstore.ansi.org/ansidocstore/
http://www.spec.org/cpu2006
http://www.boost.org/

	Table 1: C++ Benchmark Characteristics
	Benchmark
	Suite
	Files
	Bytes
	Lines
	Symbols
	Comments
	252.eon
	471.omnetpp
	473.astar
	483.xalancbmk
	444.namd
	447.dealII
	450.soplex
	453.povray
	Figure 1: Const Correctness

	C++ Benchmarks in SPEC CPU2006
	Abstract
	C++ Benchmark Selection Challenges
	C++ Standard Updates
	Leveling the Playing field with RTTI
	Porting a C++ Benchmark
	1. Const-correctness of library string returns:
	2. Nested class can access private member of enclosing class
	3. Some compilers instantiate template member functions too eagerly leading to code bloat.

	Conclusion
	Acknowledgements
	References
	Trademarks
	Notices

