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Introduction

Performance counters provide the means to track de-
tailed events that occur on a CPU chip. These events are of
interest to both performance analysts and compiler develop-
ers. Counting them provides essential clues to guide perfor-
mance improvement. For example, a tester who sees that a
program has a high cache miss rate on a particular system
may experiment with compilation options that improve
prefetching. A compiler developer who sees the same thing
may realize that the code generator's machine model is miss-
ing some crucial detail of behavior on that particular system.

The SPEC CPU subcommittee has also used perfor-
mance counters during development of the SPEC CPU2006
suite. Here, though, the interest has not been performance
improvement for a particular machine; rather, the interest is
in better understanding the benchmark candidates. This arti-
cle reviews some of the challenges of using performance
counters, describes approaches taken by the subcommittee to
deal with these challenges, and compares a set of CPU2006
vs. CPU2000 event counts for a particular system.

Difficulties

Although they provide useful information, performance
counters can be difficult to interpret.

1. Perspective. Sometimes, counters record events that
are more useful to chip architects than to users. For exam-
ple, it is not uncommon for counters to record how many
times a chip unit does an operation, without distinguishing
between operations that were done intentionally vs. user-un-
intended speculative attempts, retries, or trap replays.

2. Overabundance. CPU chips are often implemented
with more event types than the typical performance analyst
would want to use. Using them has been likened to "drink-
ing from a fire hose". Nevertheless, the analyst may be
afraid to leave any of the events unexplored, for fear that the
one with the innocent-sounding or unusual-sounding name is
the event that actually eats the most time. ("Why would the
chip architects have implemented a counter for 'bus burst en-
queue overload double retry failure' if they didn't think this
was important and at least somewhat likely to happen?")

3. Multiplexing. Although a chip may implement
many performance events, often it is only possible to count a
few of them at a time. If a performance analyst, after experi-
ence, has narrowed the set of interesting events down to, say,
14, but can only count 2 of them at a time, what should be
done? Should the program be run 7 times? Or will it be suf-
ficient to "multiplex" the events: run the program just once,
and switch which are counted at regular time intervals?

4. Idiosyncrasies. Performance counters and their as-
sociated software are not as heavily used as some other fea-
tures in systems, and so receive less testing. For example, a
performance counter implementation was once observed that

failed if a process was moved from one CPU to a another
just as the 32-bit counter overflowed. Users of that system
had to be aware of this problem, and had to develop work-
arounds. Because of such - let us call them - idiosyncrasies,
the user base for performance counters has often been limit-
ed to those with a certain level of patience and expertise.

5. Comparability. During benchmark development,
SPEC's primary interest in performance counters is to aid
understanding of benchmark candidates. But lessons learned
about a benchmark on one machine do not necessarily carry
over to other machines. Branch mispredict rates vary with
details of branch predictors. Cache miss rates and TLB miss
rates vary with capacity, associativity and compiler opti-
mization level. Floating point operation rates may depend
on whether the machine implements a fused multiply-add
(fma) -- and on whether an fma counts as one or two flops.

6. Compiler effects. If one is counting the percentage
of floating point operations, the compiler optimization level
is of central importance. Perhaps counter-intuitively, the
tendency is that the fp op% goes up as the optimization level
goes up. For example, with more optimization, the total
number of instructions for 175.vpr falls from 173 billion to
65 billion (Figure 1), but the floating point instructions in the
multiply pipe and add pipes show only minor variation. Pre-
sumably, to get the required answers, a set of floating point
calculations must be done; but the surrounding support code,
such as loads, stores, address arithmetic, pointer resolution,
subroutine calls, and so forth are cut back as the compiler
does more analysis. The overall time is less, but the floating
point operations remain, and therefore the %fp increases.

175.vpr is from SPECint2000. Another benchmark
from that set is 252.eon, whose fp op% varies up to a factor
of 5x depending on the level of optimization. Perhaps the
variability by optimization level for these 2 benchmarks
helps to account for how they made it into the CPU2000 in-
teger suite, despite not meeting the SPEC website-published
criterion that integer benchmarks should be less than 1%
floating point [1]. In any case, for CPU2006, SPEC CPU
subcommittee members made a point of measuring hardware
statistics at several optimization levels, with multiple com-
pilers and hardware platforms.

7. Confidentiality. Because performance event counts
are so closely tied to the details of individual system hard-
ware and software, subcommittee members tended to view
their full counter datasets as proprietary.

Figure 1: 175.vpr workload #2
Compilation options

Event -g -0 -fast
Instr 173B 81B 65B
FMpipe 0.1B 0.1B 0.0B
FApipe 4.9B 4.8B 5.2B
fp op% 2.9% 6.0% 8.0%



Disclaimer

This list of difficulties is not meant to paint an overly
bleak picture. Performance counters are of irreplaceable im-
portance: if you can't see which CPU component has poor
performance, you can't cure the problem. Hardware imple-
mentations have improved over time. New software tools,
such as SPOT [2], make counting easier. But CPUs are
complex; many detailed events can be counted; it is hard to
write software to present this detail clearly; it is hard to com-
pare them across systems; and their behavior is closely tied
to optimizers, so one must understand them both together.

Dealing with the challenges

From the perspective of SPEC CPU2006 development,
it was not necessary for the whole subcommittee to know the
solutions to each of the problems above. Rather, the sub-
committee relied on the expertise of its members regarding
the systems, their counter details, and their idiosyncrasies.
Also, many details could be ignored, as concerns were basic:
does this benchmark place a stress on the memory system?
Does it place more of a stress than the typical CPU2000
benchmark? Is it an integer code? Does it have a large
enough instruction footprint to cause Icache miss activity?

Although performance events are not strictly compara-
ble across architectures, it is often straightforward to con-
struct counts that are roughly comparable. For example,
SPEC wanted reports on usage of instructions in three cate-
gories, namely floating point, load/store, and integer. All
three of these were constructed for the UltraSPARC-III+
processor: (1) a flop count as the sum of the Floating Add
and Floating Multiply pipes; (2) a load/store count as the
sum of the L1 data cache reads and data cache writes; (3) an
integer count as the total instruction count minus the flop
count and the load/store count.

To minimize variation from compiler effects, members
used tuning to reflect approximately the tuning for a base
submission (SPECint_base2006, SPECfp base2006).

The problem of confidentiality was probably the
biggest challenge. Two tactics were used: (1) Although de-
tails of performance counter datasets were typically deemed
proprietary, it was often possible to obtain permission to re-
lease summary data, or to release normalized data. For ex-
ample, a member might report that benchmark candidate
997.lightweight uses few system resources, and general-
ly is less of a stress than the typical CPU2000 benchmark.

(2) After several development versions of the new suite were
built, various voting members of the SPEC CPU subcommit-
tee released data to a trusted third party: non-voting partici-
pants from the Laboratory for Computer Architecture at the
University of Texas. The University researchers prepared
normalized summaries of the data, performed clustering
analysis, and presented benchmark similarity dendograms
such as the ones shown at [3].

If normalized data from a member showed that a
benchmark used few resources, or if analysis from the uni-
versity researchers showed that two benchmark candidates
behaved similarly, this alone was not sufficient to exclude a
candidate. But it was a factor that was considered, along
with other factors such as application area, coding style, and
size of user base.

Performance Counters: UltraSPARC-III+

Performance counter data was also provided to Univer-
sity of Texas researchers using the released V1.0 kit. The
rest of this article presents the data for one such system:

* Sun-Blade 2000
« 8GB memory, 4-way interleaved
« Solaris 10
* 2x 1200 Mhz UltraSPARC-III+, each with:
* 64KB L1 Data cache on chip
» 32KB L1 Instruction cache on chip
« 8MB L2 cache, unified, 2-way set associative, off
chip
« ITLB: 16 entry fully associative
+ 128 entry two-way set associative
* DTLB: 16-entry fully associative
+ 2x 512 entry two-way set associative

The processor provides two of the larger DTLBs so that each
can be dedicated to different page sizes. For the tests report-
ed here, only the default 8KB page sizes were used.

The compiler was Sun Studio 11 with tuning -fast.
The same system under test was also used for two historical
submissions [4], which see for more description. The only
differences in the tuning between [4] and the runs here is
that this study does not use 4MB pages, and it adds the per-
formance monitoring command shown in Figure 2. The
cputrack [5] command uses multiplexing via the 9 occur-
rences of -c, and selects 18 out of the 72 possible events. [6]
The information is written to the file cputrack.all in the

Figure 2: Performance monitoring command from the configuration file

monitor wrapper = cputrack -fe -T 1 -o cputrack.out \
-c picO=Instr cnt,picl=DC_rd miss,sys \
-c picO=Cycle cnt,picl=DC_wr miss,sys \
-c pic0=DC_rd,picl=DTLB miss,sys \
-c pic0=IC ref,picl=EC_misses,sys \
-c pic0=DC_wr,picl=FM pipe completion,sys \
-c picO0=EC_ref,picl=IC_miss,sys \
-c picO=FA pipe completion,picl=ITLB miss,sys \
-c pic0=IU_Stat Br count taken,picl=IU_Stat Br count untaken,sys \
-c pic0=IU Stat Br miss taken,picl=IU Stat Br miss untaken,sys \

Scommand; \

cat cputrack.out >> cputrack.all



run directory, which is post-processed to create the metrics
shown in Figure 3. It is hoped that their meaning, and their
derivation, will be apparent given the definitions in [6] plus
the notes above mapping instruction types to counters.
However, the reader may wonder why there are 2 metrics for
%L2 misses. The reason is that for this processor, the L2
reference count includes speculative accesses that turn out to
be resolved in the L1 cache. Therefore, it is more meaning-
ful to compare the number of L2 misses to the number of L1
misses (DC_rd miss + DC_wr_miss + IC miss).

Figure 4 has event counts for the CPU2006 and
CPU2000 integer benchmarks. The most obvious difference
between the suites is for TLB activity, with remarkably more
DTLB activity, and noticeable ITLB activity.

The activity here can be considered in the light of what
is known of source code size [7], profile [8] and memory ac-
tivity[9]. In some cases, the data make intuitive sense. For
example, the very high “CWSS” (Core Working Set Size, in
the terminology of [9]) for 429.mcf matches its high DTLB
miss rate, and 483.xalancbmk's large number of source lines
matches its high ITLB miss rate. Another (possibly) intu-
itive point may be that three of the four benchmarks with
>15 mispredicts/Kins are derived from game-playing codes,
which presumably are finding paths through possible scenar-
ios of play; and the worst benchmark for mispredicts is, ex-
plicitly, a trip/path planning program.

Other statistics here could lead to interesting further in-
vestigation. For example: why does 471.omnetpp show a
large DTLB miss rate even though its CWSS is small? Why
does 403.gcc have no more L2 misses than 176.gcc, despite

Figure 4: Counters for the Integer Benchmarks

Figure 3: Metrics

time seconds, as reported by the SPEC tools
int op% percentage integer operations

fp op% percentage floating point gperations

mem o0p% percentage load/store operations
branch/Kins branches per 1000 instructions
mispre/Kins mispredicted branches per 1000 instr
ICmiss/Kins L1 instr cache misses per 1000 instr
DCmiss/Kins L1 data cache misses per 1000 instr
L2miss/Kins L2 cache misses per 1000 instructions
L2miss %L2acc L2 miss rate expressed as % of L2 accesses
L2miss %L1miss L2 miss rate expressed as % of L1 misses
ITLBm/Minst Instr TLB misses per million instr
DTLBm/Minst Data TLB misses per million instr

a much higher DTLB miss rate?

A key difference for CPU2006 vs. CPU2000 is shown
in the fp op% column. The only report over 1% in the new
suite is for 464.h264ref, but this number is not actually due
to floating point calculations. As can be seen at [8], this pro-
gram spends substantial time in memcpy — which uses float-
ing point registers for 64-byte “block load/store” instruc-
tions, but does not actually do fp calculations. The fp con-
tent formerly seen in CINT2000 has, effectively, been elimi-
nated for CINT2006.

Finally, we can note that there are 3 new programs with
worse branch behavior than any of the old programs. Never-
theless, the median number of mispredicts is on the order of
10 in both suites (with CPU2000 actually slightly higher).

operations branches L1 misses L2miss TLB
int | fp |mem |branch mispre|ICmiss DCmiss %L2 | %L1 |ITLBm [ DTLBm
benchmark time |op%|op% op% | /Kins | /Kins | /Kins = /Kins |/Kins| acc | miss | /Minst | /Minst
CINT2006
400.perlbench 2395| 72 0o 27 165 8 7.5 10 0 0 2 23 52
401.bzip2 2656| 64 0 35 151 8 0.2 24 1 0 2 0 4
403.gcc 2248| 68 0 30 190 7 4.4 101 3 2 3 44 257
429.mcf 2288| 62 0 37 182 27 0.4 91 23 7 25 0 3028
445.gobmk 2629| 70 0 29 133 23] 193 13 1 0 2 1 9
456.hmmer 2075/ 62 0 37 34 1 0.1 51 0 0 1 0 1
458.sjeng 2758| 78 0 21 159 17 5.9 5 0 0 4 0 296
462.libquantum 9775, 79 0 20 220 14 0.3 73 30 15 41 0 271
464.h264ref 4464 51 5 42 56 3 1.9 65 6 2 9 0 7
471.omnetpp 2416| 67 1 31 163 11 5 48 9 3 17 0 2404
473.astar 2332| 65 0 34 137 19 0.3 31 5 2 14 0 2161
483.xalancbmk 1720) 72 0 26 211 8 8.7 25 2 1 7 661 548
CINT2000

164.gzip 308/ 73 0 26 146 9 0.1 26 0 0 1 0 5
175.vpr 278| 57 6 35 108 13 1.1 23 2 1 6 0 141
176.gcc 180| 64 2 32 150 10 6 81 3 1 3 3 9
181.mcf 291 64 0 35 195 18 0.3 165 16 4 10 0 1620
186.crafty 158| 75 0 24 100 13 6.7 3 0 0 1 0 0
197 parser 387, 71 0 28 157 13 0.4 28 1 0 2 0 11
252.eon 227 41 10 47 60 4 2 6 0 0 0 0 0
254.gap 274| 66 0 33 133 7 1.1 38 3 1 8 0 35
253.perlbmk 3200 73 0 26 137 7 7.8 23 0 0 1 3 69
255.vortex 329, 70 0 29 151 6 8 12 1 0 4 0 295
256.bzip2 281 69 0 30 120 12 3.1 20 0 0 2 0 3
300.twolf 485/ 67 0 31 108 12 0.2 61 0 0 1 0 0




Figure 5: Counters for the FP benchmarks

operations branches L1 misses L2miss TLB
int | fp |mem |branch mispre|ICmiss DCmiss %L2 | %L1 |ITLBm | DTLBmM
benchmark time |op% | op% |op% | /Kins | /Kins | /Kins | /Kins |/Kins| acc | miss | /Minst | /Minst
CFP2006
410.bwaves 3256 31 24 44 33 1 0.1 41 17 4 41 0 132
416.gamess 4987 45 17 36 63 2 1.7 4 0 0 1 0 0
433.milc 4482 9 42 47 13 1 0.3 87| 24 6 27 0 1010
434 .zeusmp 2625 18 45 36 18 1 0.1 45 5 1 11 0 448
435.gromacs 2035| 14 48 36 30 2 0.1 14 0 0 3 0 3
436.cactusADM 8892 29 28 41 67 6 0.8 70 3 1 4 0 16191
437 leslie3d 2354 13 40 46 19 1 0.1 86| 16 4 19 0 149
444 .namd 2055 27 42 29 53 2 0 5 0 0 2 0 2
447 dealll 2657, 62 7 29 102 4 0.3 16 2 1 15 5 159
450.soplex 3539] 51 14 34 124 9 2.4 76| 19 6 24 20 465
453.povray 1209 47 19 32 104 1 8.8 7 0 0 0 104 0
454 calculix 2200, 13 54 32 28 1 0.2 11 1 0 4 0 5
459.GemsFDTD 3380 11 44 43 17 1 0.3 48| 22 6 46 0 1202
465.tonto 2520/ 39 20 39 55 3 2.5 41 1 0 1 14 5
470.lbm 4898 9 66 24 12 0 0.1 92| 25 7 27 0 237
481.wrf 2551 18 41 40 28 1 1.6 63 6 2 10 10 61
482.sphinx3 2715/ 30 37 32 57 3 0.3 21 2 1 11 0 150
CFP2000

168.wupwise 345 44 27 28 84 4 0.1 19 3 1 16 0 37
171.swim 134 5 52 41 13 0 0 102 2 1 2 0 15
172.mgrid 298 11 51 36 8 0 0.1 52| 11 3 21 0 145
173.applu 403 5 50 44 8 0 0.1 71 7 2 10 0 60
177.mesa 232 53 14 3 77 7 2.2 21 0 0 1 0 3
178.galgel 136| 17 42 39 16 0 0 38 0 0 1 0 38
179.art 252 11 27 61 45 0 0.1 261 1 0 0 0 2
183.equake 541 18 35 46 22 1 0.1 60, 23 5 38 0 182
187 facerec 119] 33 26 39 50 2 0.2 92 4 1 5 0 76
188.ammp 474/ 31 35 33 91 4 0.1 31 2 1 6 0 285
189.lucas 602 45 26 28 88 2 0.5 144 12 6 8 0 22071
191.fma3d 452 28 30 40 38 2 0.7 34 8 2 23 4 94
200.sixtrack 262 14 62 23 25 1 0.2 9 0 0 0 0 1
301.apsi 383 25 28 45 33 1 0.1 47 3 1 7 0 50

Figure 5 has the counters for the floating point bench-
marks. There are more benchmarks with DTLB activity
than in CPU2000, though the worst CPU2000 offender,
189.lucas, is not matched by any of the CPU2006 bench-
marks. For ITLB misses, only 453.povray shows significant
activity; given its large number of source lines [7] and rela-
tively flat profile [8], this makes sense. The L2 miss rates
are higher for CPU2006, but L1 miss rates and branch mis-
predict rates are not strikingly different between the suites.
As with CPU2000, the floating point benchmarks generally
have fewer branches than the integer benchmark — unless the
language is C++. Three of the four C++ benchmarks have
>100 branches/Kins.
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