SPEC CPU2006 Benchmark Tools

Cloyce D. Spradling
Systems Group, Sun Microsystems
Release Manager, SPEC CPU Subcommittee
Contact: cloyce.spradling@sun.com

Introduction

The benchmarks that make up the SPEC CPU2006
benchmark suite are set-up, run, timed, and scored by the
CPU tools harness. The tools have evolved over time from a
collection of edit-it-yourself makefiles, scripts, and an Excel
spreadsheet to the current Perl-based suite. The basic pur-
pose of the tools is to make life easier for the benchmarker;
they make it easier to tweak compilation settings, easier to
keep track of those settings, and most importantly, they
make it easier to follow the run and reporting rules.

This paper will explain how the tools work to provide
services for users who want to generate benchmark scores
and also for those who want to conduct research using the
SPEC CPU benchmarks. The course of a normal, score-gen-
erating run is followed from setup to report generation, ex-
panding on some sections such as timing that have never
before been documented. A couple of new features designed
to make life easier for users of the CPU2006 benchmark
suite are discussed. Features aimed at researchers are also
explored, such as how modified benchmark sources may be
tested, ways to work around the tools when they get in your
way, and how the tools can help with profiling workloads.

Throughout this paper, you will see references to
$SPEC This is just a shorthand way to refer to the top of
your CPU2006 installation. If you are a Unix user, you can
use this directly as it is the name of an environment variable
set by shrc or cshrc . The Windows equivalent is %SPEC%
and is set by shrc.bat . The overall directory structure is
the same on all platforms.

A Normal Run

The SPEC CPU benchmarks exist primarily to measure
the performance of computer systems in a consistent fash-
ion; as such, we consider a “normal” run to be one where the
tools are used to build, run, and report on a benchmark or set
of benchmarks that have not been modified. Only such a run
may produce a publishable score. In this case, all that is nec-
essary is to provide some compilation options (if the bench-
marks are not pre-built), run the benchmarks and generate a
result. This section describes how a normal run works; a lat-
er section discusses some features that can be used when
more than this basic level of functionality is desired.

Building the Benchmarks

The CPU2006 benchmarks are supplied as source code,
and must be compiled before they can be used to generate a
result. Compilation settings including the name of the com-
piler, compiler flags, and build method are all specified by a
configuration file.[1]

In the general case, the setup of a build directory is
straightforward. The tools create a working directory for the

build if one does not already exist, and copy the source files
from the benchmark's src/ directory. After the copy, the
MD5 checksum of each file is checked after it has been
copied; if there is a mismatch, the build is aborted. This is
done primarily to catch what would be very difficult-to-re-
produce errors caused by bad RAM or disks, and also guards
against the use of modified sources.

After the files are copied, the tools write the settings
found in the configuration file to Makefile.spec in the
working directory. This file only contains settings for vari-
ables; all of the actual compilation rules used are in the file
$SPEC/benchspec/Makefile.defaults These rules
are the same for all benchmarks.

The tools then invoke specmake, which is a slightly
modified version of GNU make, to build the benchmark bi-
nary. If the compilation completes successfully, the result-
ing executable is copied into the benchmark's exe/ directory
for future use. The options used to build the benchmark, the
MDS5 sum of those options, and the MD5 sum of the exe-
cutable itself are all stored back into the configuration file.
This allows the tools to automatically determine when a
benchmark needs to be rebuilt based on whether its options
have changed. The MDS5 checking feature was added to
CPU2000; prior to that, it was not possible to know with cer-
tainty that a particular set of binaries were generated with a
particular set of options.

Running the Benchmarks

When a run of any type is requested, the tools check to
see if a binary already exists and if so, that the compilation
settings used for it have not been changed. Unless explicitly
disallowed by the use of the --nobuild flag or the nobuild
configuration file setting, the benchmark will be rebuilt if ei-
ther of the above conditions are not true.

The tools will check to see if a suitable working direc-
tory for the run already exists under the benchmark's run/
directory, and create one if it does not already exist. The ex-
ecutable is copied from the benchmark's exe/ directory, and
the input files are copied from the appropriate workload di-
rectories under the benchmark's data/ directory. As with
the source files, and for the same reasons, the MD5 sums of
all executable and all the input files are verified after copy-
ing.

Each benchmark has an invoke() method specified in
its object.pm file which provides information about how to
run the benchmark. The information is written to speccmd-
s.cmd in the working directory and the tools call specin-
voke to actually run and time the benchmark. Various
utilities mentioned in this article, such as specinvoke, are
described in utility.html [6].

mailto:cloyce+acm@headgear.org

Timing the Benchmarks

One measured iteration of a benchmark for which an
elapsed time is reported may actually consist of several invo-
cations of the benchmark binary with different inputs and
outputs. For example, the binary for 450.soplex is run twice
during a run using the reference workload; once with
pds-50.mps as the input file, and once with ref.mps

Thus the elapsed time of one iteration is the sum of the
elapsed times for each run of the benchmark binary. That is,
the timer starts when the binary begins execution and ends
when it completes. This time includes time needed to load
and begin execution of the binary, benchmark I/O time for
reading inputs and writing results, and calculation time.

The elapsed time reported for a benchmark iteration will
never exactly match the wall-clock time that the iteration
takes, because the tools also validate the benchmark's output,
and the time required for the validation is not included in the
reported time.

Generating Reports

Once all of the runs are finished, the tools generate re-
ports. In all cases, a “raw” result file is generated. This is
really the only required output format; with a copy of the
raw file, the tools can generate any of the supported report
formats.

The raw file also contains copies of the configuration
file used to generate the result and lists of all options used to
build the benchmarks. The stored configuration file can be
retrieved using the extract_config tool. [6]

If a raw file is not available, but an HTML, PostScript,
or PDF format result is, the raw file can be extracted from
that using the extract_raw tool. [6] Thus, in most situa-
tions the raw file and all of the ancillary information that it
contains can be retrieved.

There are also a couple of “output formats” which do
not actually generate a report of their own. The first is
“subcheck”, which runs as a formatter but is really more of a
verification script. It checks the informational fields in a re-
sult and reports on the elements that must be changed before
a result will be accepted by SPEC for review and publica-
tion. It checks for proper units on fields that must have
units, mandatory fields that are blank, and other criteria re-
quired for a submission to SPEC. A “PASS” from subcheck
is no guarantee that a result will pass review, but it is a guar-
antee that the SPEC result handler will not automatically re-
ject your submission because of the contents of the
informational fields of your result.

The other formatter that generates no report of its own
is the “mailto” formatter. As the name suggests, it can be
used to mail the results of a run to a specified list of address-
es. It requires some setup, most of which will go into the
configuration file. The primary use is when running a long
test: at the end, you will be notified by email that the test is
complete. Because the options can not be specified on the
command line, it really is not much use when re-formatting
results that have been already run. For more information on
how to set up report mailing, see the configuration file docu-
mentation.

Going Beyond the Numbers

Not all CPU2006 users are interested solely in the
scores that a particular system can achieve given a set of
benchmark binaries and some time. Some may be interested
in the characteristics of a particular benchmark, while others
may be concerned with getting better optimization or flag
sets. Still others may need to do runs on a wide range of
systems using the same binaries. The tools have features to
address all of these needs.

Configuration Management

One of the toughest parts of preparing a result for publi-
cation in any venue is getting the informational fields cor-
rectly filled in. While reviewing the results that are
published on the SPEC web site, the review committee has
seen many instances of incorrect hardware descriptions.
Such errors can be difficult to spot because in many cases it
is necessary to be extremely familiar with the nuances of a
particular product line to spot these errors.

With CPU2006, it is possible to avoid these errors alto-
gether. The problem of being able to determine the hard-
ware configuration on any platform under any operating
system is not one that we attempted to solve. However, no
user runs on all operating systems on all platforms. The
problem of automated hardware description is tractable
when the scope of the problem is narrowed to one operating
system.

As with several other difficult problems with which the
CPU tools attempt to deal, we enlist the help of the user.
The tools do not attempt to do any determination of the sys-
tem configuration themselves, but they do provide a facility
for running a user-provided program which can query the
operating system and hardware and dynamically insert that
information into the configuration file being used.

For example, the following script could be used on
some Linux systems to fill in information about the number
of CPU cores enabled:

#!/bin/sh

CORES="grep proc /proc/cpuinfo | wc -I'
echo hw_ncores = $CORES

If this script was called $SPEC/linux_sysinfo , you
could use it by inserting the following into the header sec-
tion of your configuration file:

sysinfo_program = $[top]/linux_sysinfo

It is likely that some human intervention will be re-
quired in order to fill in details and polish names, but the use
of this facility should be able to eliminate the grossest errors.

For more information, see the section on
sysinfo_program in the configuration file documentation,
and the sample sysinfo program.[2]

Documenting Compilation Options

Another error-prone part of result preparation is the
documentation of the compilation options used. Checking
compilation options is also one of the most tedious parts of

reviewing a result for publication. It is not enough to just
verify that only the options listed were used, but it is also
necessary to ensure that those options are documented. Prior
to CPU2006, this tedium was foisted on the result reviewer —
the one with the least opportunity to effect change when nec-
essary! The problem was compounded by the “flag count-
ing” rules in CPU95 and CPU2000 which restricted baseline
optimization to four flags. The rule itself was not the prob-
lem; it was the counting. Some flags are easy. “-O” is clear-
ly one flag. But what about “-gqxinline=27
:bob:88:fastturnaround”? Is it one flag or four? The exer-
cise (as usual) is left to the reader.

As a result of the tedium and the difficulty of counting,
automated flag auditing was one of the most requested fea-
tures for CPU2006. As with hardware configuration deter-
mination, flag auditing is a difficult problem. Once again,
the tools enlist the help of the user. By providing a flag de-
scription file[3] with regular expressions to match flags and
documentation of those flags, the user enables the tools to
provide a complete and accurate report of the flags used for
each benchmark, as well as a separate report with the docu-
mentation for those flags. In result formats that support link-
ing (currently HTML and PDF), the flags listed in the result
page link to the documentation for the flag.

Creating a flag description file from scratch is a non-
trivial exercise. Fortunately, it will probably not ever be
necessary, as there are a couple of functional examples [4]
provided with CPU2006 itself. Additionally, the flag de-
scription files used for the results published at SPEC are also
publicly available, [5] and together these cover the most
common compilers in use today. Each result page contains
the URL for the flag description file used for that result.

Sharing the Installation

Both CPU95 and CPU2000 did all benchmark builds
and runs in directories under the top-level installation direc-
tory. On many systems, this poses a problem when attempt-
ing to share one installation among several users. In that
situation, it is necessary for everyone to have write access to
all parts of the installation. That is not always desirable or
even possible.

CPU2006 has a couple of features to address this situa-
tion.

For groups where sharing write access is not a problem,
for example when everyone runs the benchmarks as “root”
(which is not a recommended practice), there is just a need
to keep one user's runs and results separate from another.
Each user can, in his configuration file, specify an expid
(short for “experiment ID”). This will cause run directories
and result and log files to be deposited in a subdirectory
named for the value of expid underneath the normal direc-
tory where those files would normally appear. For example,
result files are normally written to $SPEC/result/ . With
an expid setting of “goof-off”, results would be written into
$SPEC/result/goof-off/

A better way to share a benchmark tree does not require
giving everyone write access to the whole tree. Instead, the
output_root feature can be used to put all writable direc-
tories into a completely separate hierarchy. Because the
configuration file must be updated when a build is complet-
ed, and because the output root can only be specified in a
configuration file, the configuration files still live under-
neath the main install tree, and the “config” directory still

needs to be writable by all users. On Unix systems, the po-
tential for mischief can still be mitigated by setting the
sticky bit on $SPEC/config/ , and permissions on individu-
al configuration files can be set to prevent reading by other
users if necessary.

Users using the output root feature may be interested in
the ogo shell alias [6]. Like go, it provides a quick way to
jump to various places in the benchmark tree. Unlike go, it
uses the GOenvironment variable to point to the base of an
output root. The ogo alias knows which parts of a tree are
always found under $SPECand which go in an output root,
and can navigate accordingly.

Modifying the Sources

Those interested in optimization techniques often want
to try source code changes. Unfortunately, the same tools
features that ensure that no files have been corrupted can
make this difficult.

However, by using the mechanism already in place for
using approved source changes, (“src.alt” in SPEC parlance)
it is easy to work around this particular feature.

The process is simple, but heretofore undocumented.
Under the benchmark's src/ directory, create a subdirectory
named src.alt/ and another under that with a short name
for your modification. For this example, we wish to test
some changes where we have re-rolled some hand-unrolled
loops in 999.specrand. For something like that, a short name
like “rerolled” would be appropriate. The first step would be
to create the directory hierarchy src/src.alt/rerolled/
under the 999.specrand benchmark directory.

Into this directory go the modified source files. Addi-
tionally, it is necessary for a READMEfile to be present,
though it does not need to actually contain anything.

Running the makesrcalt utility will cause the differ-
ences of the modified files and the existing files to be taken
and a control file written. For this example, the invocation
would be

$ makesrcalt 999.specrand rerolled

This command will need to be re-run whenever the sources
are modified.

To use the newly generated src.alt, it is necessary to put
a line in the configuration file for the benchmark in question.
For no good reason, the configuration file tag is “srcalt”, and
the value to use is the short name that you gave to the direc-
tory above. (CPU2006 V1.1 will support the more intuitive
configuration file tag “src.alt”.) The configuration file addi-
tion for our example src.alt would be

999.specrand:
srcalt = rerolled

Subsequent builds of 999.specrand will use the modified
sources.

Note that in general, results generated from binaries
built with modified sources may not be published. The only
exception is for SPEC-approved alternate sources which ad-
dress portability concerns in a performance-neutral way.
For more information about the rules relating to source
changes in CPU2006, please see the Run and Reporting
Rules [7].

Figure 1: Usage of the -n option for specinvoke

$ specinvoke -n

Starting run for copy #0

Use another -n on the command line to see chdir commands

../run base ref none.0000/specrand base.none 1255432124 234923 > rand.234923.out 2>> rand.234923.err

Modifying the Workloads

There are no features to aid in modifying the workloads.
If testing modified workloads is your goal, you will need to
work around the safety features in the tools. You can still
use the tools to prepare your work area and run your experi-
ments. You could also use them to test your outputs, but
chances are that if the inputs are changing, the supplied out-
puts will not match anyway. You also will not be able to
generate a report.

The first step is to get a run directory set up. You can
do this by using the runspec “setup” action. It will make
a directory (if necessary), copy your benchmark executable
into the directory, copy the input data into the directory, and
create the specinvoke control files for running the bench-
mark and also for validating the output. In other words, it
does everything it would for a normal run, stopping just be-
fore actually executing the benchmark. Here is an example
command to set up a run directory for the reference work-
load of 400.perlbench:

$ runspec --action setup =--input ref \
—-config macosx.cfg 400.perlbench

The above command will build a benchmark executable
if necessary, set up the run directory, and exit. It is then up
to you to navigate there. The go shell alias comes in handy
in this case:

$ go 400 run

This will take you to where the run directories for
400.perlbench are stored. From there you will see the direc-
tory that runspec prepared for you.

Inside the run directory, you will find several files of in-
terest. If you want to use specinvoke to run and time your
experiments, pay special attention to speccmds.cmd. This
file contains specifications of each invocation for one bench-
mark iteration, as well as specifications for input and output
redirection. By modifying this file, you can change which
invocations happen, where the outputs go, and which exe-
cutable is used.

Of course, it is not necessary to use specinvoke; you
may simply wish to use it to dump out the commands that
would normally be issued and then run those by hand. In

that case, run “specinvoke -n” in the run directory. See
Figure 1 for an example. If you are using a Bourne-compati-
ble shell, executing the commands from Figure 1 will have
exactly the same effect as running the benchmark with
specinvoke.

There is more information on avoiding the use of the
tools, including different scenarios and many more examples
in the CPU2006 documentation.[8]

Watching the Runs

Running code or hardware profilers in conjunction with
the benchmarks is a common activity. The CPU2006 tools
have all of the monitoring capabilities that the CPU2000
tools did, in largely unchanged form. Unfortunately, the
documentation for these features was not completed in time
for the release of CPU2006 V1.0. If you used the monitor
hooks in CPU2000, your knowledge should still be good.
Documentation for these features is planned for a future up-
date of the suite.

In the meantime, here is a short primer on the dedicated
monitoring facilities in CPU2006. There are several hooks
which provide opportunities to run monitoring applications
at various points before, during, and after a run. All of these
hooks are set in the configuration file, and may either be set
globally (in the header section) or on a per-benchmark basis.

The monitoring hooks called monitor pre bench
and monitor_ post_bench allow programs to be executed
before and after specinvoke is called to run the bench-
mark. This could be used to harvest files written by an in-
strumented binary or to start and stop a system-level profiler.
As an example, Figure 2 has the settings which were used to
collect branch and basic block data presented in Darryl Gov-
e's paper on workload correspondence.[9] Before the run
(monitor pre bench), the Binary Improvement Tool
(bit) [10]) is used to instrument the benchmark executable.
After the run (monitor post_bench), bit is used again to
dump statistics from the run into files in the $SPEC/analy-
sis/ directory.

The values for $commandexe and $size are provided
by the tools at run time; there are many others available. Ex-
actly which are available vary depending on what is being
done — for a list of the variables available for substitution,
execute your runspec command with the verbosity set to 35

Figure 2: Usage of the monitor hooks

monitor pre bench = bit instrument ${commandexe}; cp ${commandexe} ${commandexe}.orig; \
cp ${commandexe}.instr ${commandexe}

monitor post bench = bit analyze -o $[top]l/analysis/branches.${benchmark}.${size}.csv \
-a branch ${commandexe}; \
bit analyze -o $[topl/analysis/blocks.${benchmark}.${size}.csv \
-a bbc ${commandexe}; cp ${commandexe}.orig ${commandexe}

Figure 3: Two ways of using the monitor hooks with strace

monitor specrun wrapper = strace -ff -o $benchmark.calls
mkdir -p $[topl/calls.$lognum; mv $benchmark.calls* $[top]/calls.$lognum

monitor wrapper = strace -f -o $benchmark.calls.\$\$ Scommand; \
mkdir -p S$[top]/calls.Slognum; mv Sbenchmark.calls.\$\$ $[top]/calls.$lognum

$command; \

or greater. This can be accomplished by specifying “-v 35”
as arguments on the runspec command line.

By using monitor specrun wrapper, it's also possi-
ble to directly monitor specinvoke, and by extension the
entire benchmark iteration, no matter how many separate ex-
ecutions that involves. For example, to generate a system
call trace for specinvoke and all its children on a Linux
system, you could use the first example in Figure 3. In that
example, the crucial point is $command; it expands to the
full command to be run, including arguments. As you might
guess, if $command is omitted or replaced, something other
than the desired command will be traced, and the bench-
mark run will not validate.

The execution time for the commands specified by
monitor pre bench, monitor_ post bench, and moni-
tor specrun wrapper are not included in the bench-
mark's reported time.

It is also possible to instrument each invocation of a
benchmark binary using monitor wrapper. This allows
profiling or tracing of the individual workload components
without measuring the overhead of specinvoke. One po-
tential disadvantage is that the execution time of these com-
mands is counted as part of the benchmark's reported run
time. The second example in Figure 3 saves each output file
directly into the profile directory. This results in the same
profile files being stored in $SPEC/calls.$lognum, with
the exception that there is no output file for specinvoke.

One very important point to note about
monitor wrapper is that by default any output that the
monitoring software writes to stdout will be mixed with the
benchmark's output. A setting such as the following will
cause many of the benchmarks to fail validation:

monitor wrapper = date; $command

The benchmark's expected output certainly does not include
the current time of the run. This is a contrived example of a
real problem that can occur even if the monitoring program
outputs only benign static status information. This is be-
cause normally the output redirections are set up by
specinvoke before executing the benchmark. A similar
problem can occur with input if the monitoring application
consumes input that the benchmark expects to find on stdin.

The way around this problem is a configuration file
switch called command_add redirect. Normally input
and output files are opened by specinvoke and attached di-
rectly to the new process' file descriptors. Setting com-
mand_add redirect in the header section of the
configuration file causes that step to be skipped and instead
modifies the benchmark command to include shell redirec-
tion operators. So, in Bourne shell syntax, by default the
above example translates to something like

(date; $command) < in > out 2>> err
With command_add_redirect set, this becomes

date; Scommand < in > out 2>> err

The output from the date command is still stored, but in a
file in the run directory that is not subject to validation.

The monitoring facilities in CPU2006 are not limited to
the simple examples presented here. Scripts and programs
of any level of complexity may be used to examine com-
mand arguments and executables and change their monitor-
ing actions accordingly. In this way only a specific part of a
benchmark's workload may be monitored while not wasting
time or other resources tracing uninteresting workloads.

Conclusion

This is just a short overview of the operation of and new fea-
tures in the SPEC CPU2006 toolset. With the exception of
the timing description, the src.alt creation process, and the
monitoring facilities, everything is documented in much
more detail in the CPU2006 documentation set, which is
publicly available at http://www.spec.org/cpu2006/Docs/ .

Acknowledgements

Thanks go to the members of SPEC's CPU subcommittee for
suggesting many of the new features detailed here. Special
thanks go to Miriam Blatt, Darryl Gove, and John Henning
of Sun Microsystems, Rick Jones of Hewlett-Packard, and
Mat Colgrove of The Portland Group for their critical feed-
back.

References

[1] “SPEC CPU2006 Config Files”,
http://www.spec.org/cpu2006/Docs/config.html

[2] “Sample sysinfo program”,
http://www.spec.org/cpu2006/Docs/sample-sysinfo-
program.pl

[3] “CPU2006 Flag Description Format”,
http://www.spec.org/cpu2006/Docs/flag-description.html

[4] Sample flags files are in the “Docs/flags” subdirectory of
the CPU2006 distribution

[5] See http://www.spec.org/cpu2006/flags/

[6] “SPEC CPU2006 Utility Programs”,
http://www.spec.org/cpu2006/Docs/utility.html

[7] “SPEC CPU2006 Run and Reporting Rules”,
www.spec.org/cpu2006/Docs/runrules.html#rule_1.2.1

[8] “Runspec Avoidance”,
www.spec.org/cpu2006/Docs/runspec-avoidance.html

[9] Darryl Gove, Lawrence Spracklen, “Evaluating the
correspondence between training and reference
workloads in SPEC CPU2006”, Computer Architecture
News, Vol. 35, no. 1, March 2007

[10]“Cool Tools - Binary Improvement Tool (BIT),”
http://cooltools.sunsource.net/bit/.

http://www.spec.org/cpu2006/Docs/runspec-avoidance.html
http://www.spec.org/cpu2006/Docs/runrules.html#rule_1.2.1
http://www.spec.org/cpu2006/Docs/utility.html
http://www.spec.org/cpu2006/flags/
http://www.spec.org/cpu2006/Docs/flag-description.html
http://www.spec.org/cpu2006/Docs/sample-sysinfo-program.pl
http://www.spec.org/cpu2006/Docs/sample-sysinfo-program.pl
http://www.spec.org/cpu2006/Docs/config.html
http://www.spec.org/cpu2006/Docs/

	Figure 1: Usage of the -n option for specinvoke
	Figure 3: Two ways of using the monitor hooks with strace
	Figure 2: Usage of the monitor hooks
	SPEC CPU2006 Benchmark Tools
	Introduction
	A Normal Run
	Building the Benchmarks
	Running the Benchmarks
	Timing the Benchmarks
	Generating Reports

	Going Beyond the Numbers
	Configuration Management
	Documenting Compilation Options
	Sharing the Installation
	Modifying the Sources
	Modifying the Workloads
	Watching the Runs

	Conclusion
	Acknowledgements
	References

